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Abstract. We report several exact solutions of a two-dimensional (2D) Gross-Pitaevskii equation with an
optical lattice potential, which describe the motion of an array of ultracold atomic quasi-clusters in a Bose-
Einstein condensate. The velocity of the atomic quasi-clusters can be controlled by adjusting the optical
potential strength so that one can stop or drive them by the optical brake. The atomic quasi-clusters form
a superfluid for the propagation state or a critical insulator for the non-propagation one, and the brake
and drive are associated with the quantum phase transitions between the insulator and superfluid.

PACS. 03.75.-b Matter waves – 05.70.Jk Critical point phenomena – 05.30.Jp Boson systems –
67.90.+z Other topics in quantum fluids and solids; liquid and solid helium

1 Introduction

The optical lattice potential induced by the ac Stark effect
of interfering laser beams has been often used to confine
ultracold atoms [1–7]. The corresponding theoretical in-
vestigations were carried out by using two different meth-
ods. One of them employs the Bose-Hubbard model [8–11]
to develop the dynamics of the bosonic atoms on the opti-
cal lattices. To derive some useful results from this model,
one had to adopt the harmonic approximation expand-
ing around the minima of the potential wells [12,13]. An-
other method is to consider the mean field approxima-
tion [14,15] and to solve the Gross-Pitaevskii equation
(GPE) with the optical lattice potential [16–20]. Most of
the analytical work was based on a quasi-1D model in
the context of ultracold atoms, where the optical lattice
potential was applied to study the macroscopic quantum
interference [16], atom number squeezing [17], Josephson
junction arrays [18] and discrete solitons [19], and so on.
Several exact steady state solutions of 1D GPE were con-
structed and discussed by Bronski et al. [20]. The results
were extended to multi-dimensional cases [21], and the
stabilities of the exact solutions [22] and interference pat-
terns [23] of the system were demonstrated. The quantum
phase transitions between a superfluid and a Mott insu-
lator were theoretically predicted in the Bose-Hubbard
model [12,24,25] and experimentally observed by Greiner
and coworkers [13] in a Bose-Einstein condensate (BEC)
with repulsive interactions, held in a 3D optical lattice po-
tential. It is well-known that the superfluid state can be
described by the GPE of mean field theory, but the Mott
insulating state cannot. There exist two interesting prob-
lems: In what case does the GPE become invalid in the
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process of quantum transition? Has the system a critical
state between the superfluid and Mott insulating states?

Our previous works have investigated the time evolu-
tions of some 3D BECs analytically and numerically [26].
In this paper, we report several exact analytical solutions
of the 2D stationary state GPE with either two differ-
ent or identical component amplitudes of the optical lat-
tice potential and demonstrate that the analytical results
indicate a useful method to experimentally operate the
ultracold atomic quasi-clusters in the optical lattices. Dif-
fering from common atomic clusters that are bound only
by the interatomic interactions, formations of the atomic
quasi-clusters depend on the external optical lattice poten-
tial. According to our analytical results, the atomic quasi-
clusters behave like free particles after setting the optical
potential to equilibrate the atom-atom interaction. By in-
creasing the depth of the first potential component enough
to suppress the quantum tunnel along the first direction,
the atomic quasi-clusters are forced to move toward an-
other direction and the problem is reduced to quasi-1D
one. Further increasing the depth of the second potential
component can stop the atomic quasi-clusters, then de-
creasing the depth will drive them again. The brake and
drive imply the existence of quantum phase transitions
between a superfluid and a critical insulator, where the
GPE is just validated. The results show that mean field
theory is valid only for the ratio of trap depth to inter-
atomic interaction intensity being less than or equal to
two times the atomic number per well. When the depth
is equal to this limit, the system arrives at the critical in-
sulating state. If the limit is exceeded by the trap depth,
the GPE is no longer valid and the system may enter the
Mott insulating state. Our critical insulating state is a new
one that just gives the critical value of the trap depth for
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stopping the atomic quasi-clusters, which should be less
than the critical value to enter the Mott insulating state.
The result is in qualitative agreement with the experimen-
tal data reported by Greiner et al.

2 Exact solutions of the 2D GPE

In the recent experiment of Greiner et al. [13], a 3D
optical lattice potential proportional to the product of
the dynamic atomic polarizability and the laser inten-
sity within a harmonic potential from magnetic trap were
set. The forced radio-frequency evaporation was used to
create condensed atoms near a temperature of absolute
zero. If we turn off the standing wave laser along the z-
direction and adjust the magnetic trap potential to re-
duce the 3D system to quasi-2D one. Counting in the
magnetic contribution, the total 2D potential is writ-
ten as V = mω2(x2 + y2)/2 + V1 sin2 kx + V2 sin2 ky,
where the term proportional to the atomic mass m is the
magnetic potential with ω the trap frequency, k is the
wavevector of the laser light, the amplitudes V1 and V2

may be the same or different with positive or negative
sign. Adopting Greiner’s experimental parameters ω = 24,
λ = 2π/k = 0.852 µm, V1 = V2 ∼ Er, m ≈ 87mp

with mp being the proton mass and Er = �
2k2/2m the

recoil energy, the magnetic potential strengths read as
mω2(x2 + y2)/2 = 4.14137 × 10−7k2(x2 + y2)Er. In the
experimentally valid region of the magnetic trap, the max-
imal harmonic potential is much less than the maximal
optical one and can be neglected such that we have the
stationary state 2D GPE

−ψxx−ψyy +
(
V1 sin2 x+ V2 sin2 y + g0|ψ|2

)
ψ = µψ. (1)

Here the wave function ψ has been normalized in units of
the wavevector k, the spatial coordinate has been normal-
ized by k−1, and the amplitude Vi and chemical poten-
tial µ have been normalized by the recoil energy Er so all
variables and parameters in equation (1) are dimension-
less. In such units, the interatomic interaction intensity
related to the s-wave scattering length a is in the form
g0 = 8πka.

It is quite interesting to derive the exact solutions of
GPE (1) for describing the ultracold atomic quasi-clusters,
whose norm is spatially periodical and phase is nontrivial.
Theoretically, equation (1) allows us to select a suitable
laser potential such that the two competing potentials, ex-
ternal and internal interactions, reach indifferent equilib-
rium. This can be experimentally done by adjusting the
optical potential to make a balance between it and the
interatomic interaction. By using this method, some ex-
act solutions of 1D GPE for a repulsive interaction with
g0 = 1 were constructed by Bronski et al. [20]. By the
balance between the external and internal interactions we
mean that their sum is equal to a constant,

V1 sin2 x+ V2 sin2 y + g0|ψ(x, y)|2 = µ− 1. (2)

Thus equation (1) is simplified to the linear Schrödinger
equation of a free particle ψxx + ψyy + ψ = 0 whose solu-

tions are familiar to us,

ψ1 = R1 exp(iΘ1) =
√
−V1/g0 sinx+ i

√
−V2/g0 sin y

for µ = 1, Vi/g0 < 0;

R2
1 = −(V1 sin2 x+ V2 sin2 y)/g0,

Θ1 = arctan(
√
V2 sin y/

√
V1 sinx); (3)

ψ2 = R2 exp(iΘ2) =
√
V1/g0 cosx+ i

√
V2/g0 cos y

for µ = 1 + V1 + V2, Vi/g0 > 0;

R2
2 = (V1 cos2 x+ V2 cos2 y)/g0,

Θ2 = arctan(
√
V2 cos y/

√
V1 cosx). (4)

The transpositions between x and y in equations (3, 4)
can lead to two new solutions ψ3 = R3 exp(iΘ3) and
ψ4 = R4 exp(iΘ4) that have same norms and different
phases with the solutions ψ1 and ψ2 respectively. The
chemical potential µ of the macroscopic quantum sys-
tem corresponds to the eigenenergy in the Schrödinger
equation of a single particle. It may take various possi-
ble values representing various possible states of the sys-
tem. The solutions (3, 4) corresponding to µ = 1 and
µ = 1 + V1 + V2 denote two special states respectively.
They not only satisfy the Schrödinger equation for a free
particle, but also obey the constraint of equation (2). The
constraint leads the solution to a sum of the cosine and
sine terms, as in equations (3, 4). Their exponential forms,
cosx = (eix + e−ix)/2, i sinx = (eix − e−ix)/2, show that
any exact solution is a linear superposition of four plane
waves propagating along ±x- and ±y-directions with ve-
locity µ. Hence these exact solutions are some shape-
preserving wave packets and represent several stationary
states of the nonlinear Schrödinger equation for a BEC in-
teracting with the standing wave laser field. Their norms
denoting the densities of particle number are spatially
periodic and therefore describe some arrays of ultracold
atomic quasi-clusters. Setting V1 = V2 = 8 and using
the experimental parameters [13] λ = 2π/k = 852 nm,
a = 5.5 nm, namely g0 = 8πka ≈ 1.02, from equation (4)
we plot the 2D number density R2

2 on the xOy-plane in
Figure 1, where the mesh surface represents the 2D poten-
tial. For the attractive interaction with g0 = −1.02, V1 =
V2 = 8 from equation (3) we make the plot R2

1 on the
xOy-plane in Figure 2. These figures respectively display
eight atomic quasi-clusters with density distributions over
each optical lattice that are essentially identical.

The total number of the BEC atoms N cannot be
strictly fixed in general experiments, because of the loss
of atoms. An interesting property is that if N is fixed,
any one of the exact solutions allows us to simultaneously
know the phase in any jth lattice and the average num-
ber of atoms per lattice. For instance, by setting the total
number of the optical lattice sites as n×n, the applications
of ψi with known phase Θi to the normalization integral
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Fig. 1. A 3D plot of the particle number density R2 on xOy-
plane from equation (4) for parameters V1 = V2 = 8, g0 = 1.02.
Eight ultracold atomic quasi-clusters are shown in this figure.
The mesh surface represents the 2D optical potential.
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Fig. 2. Surface of the particle number density on xOy-plane
from equation (3) with V1 = V2 = 8 and g0 = −1.02 that
exhibits eight different atomic quasi-clusters.

result in the average number of atoms per well

N/n2 = (nπ)−2

∫ (n+1/2)π

π/2

R2
i (x, y)dxdy

= |(V1 + V2)/(2g0)| (5)

for i = 1, 2, 3, 4, where we have let the boundary coordi-
nate be x0 = y0 = π/2 which is the peak point of the
optical potential. For two identical standing waves with
V1 = V2 = V0 the number becomes N/n2 = |V0/g0|. A
marvelous property is that when the system is in any state
of equations (3, 4), the average number of BEC atoms per
well is completely determined by the trap depth |Vi| for
the given g0.

Let the BEC atoms initially fill some optical lattice
sites, the ultracold atomic quasi-clusters form and move
with a certain velocity on the xOy-plane. The phase gra-
dient of the solution ψi is correlated to the superfluid ve-
locity �vi = k��∇Θi(x, y)/m and atomic current density
�Ji = R2

i�vi. The appearance of the factor k is due to the
normalized coordinates by its inverse, k−1. The spatially
dependent propagation velocity and atomic current den-
sity imply that the motion of the atomic quasi-clusters is
not only a whole translation, but also contains the spa-
tially variable internal-motion. Applying equations (3, 4)
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Fig. 3. The norm of current densities on xOy-plane from equa-
tion (7) in unit k2

�
2V1V2/(mg0), which shows its spatial peri-

odicity.

we rewrite the atomic current density formula as

�Ji = R2
i�vi =

R2
i k�

m

(
∂Θi

∂x
�ex +

∂Θi

∂y
�ey

)
=
k�

√
V1V2

mg0
�ei,

�e1 = �e4 = (cosx sin y�ex − cos y sinx�ey) ,
�e2 = �e3 = (cos y sinx�ex − cosx sin y�ey) , (6)

where �ex and �ey denote the unit vectors of x and y-
directions. It is easily seen that the norms of the four
current densities are identical, namely

| �Ji|2 = J2 =
k2

�
2V1V2

mg0
(cos2 x sin2 y + cos2 y sin2 x). (7)

Adopting the unit k2
�

2V1V2/(mg0), this is plotted in Fig-
ure 3, which shows periodical evolutions of the current
norm on xOy-plane. Equations (6, 7) show that the am-
plitude of the current density can be controlled by the
trap depth Vi. It warrants our attention that the exact so-
lutions contain the zero density points (x0, y0) at which
Ri(x0, y0) = 0 meaning that no atoms can reach these
points. Therefore, at these points the superfluid velocity
has no definition.

The Bose-Hubbard Hamiltonian is a representation of
the exact Hamiltonian with two-body interactions using
the basis of Wannier states, localized at the lattice sites.
There are two approximations that give the Bose-Hubbard
Hamiltonian:

a. only a single band is assumed;
b. only nearest neighbor interactions are included.

Differing from this, our approach can be used to seek ex-
act solutions of the system without these approximations.
Comparing with the atoms in the Bose-Hubbard lattices
where one is allowed to create or annihilate a single atom
in any lattice for a superfluid, our atomic quasi-cluster
can form and propagate as a whole, through the optical
operation. Another difference between the Bose-Hubbard
model and our method is that the former can be applied
to the Mott insulator and the latter can treat only the
superfluid and critical insulating state.

It is known that if one suddenly turns off the mag-
netic and optical trap in an experiment, the atomic wave
function will retain its initial phase and exhibit the in-
terference pattern [13,27,28]. From equations (3, 4) we
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Fig. 4. Surface of the 2D optical potential V = V1 sin2 x +
V2 sin2 y on the xOy-plane for V1 = 10 and V2 = 2. It shows
that for a sufficiently high barrier V1 the BEC atoms can prop-
agate only in the y-direction.

have the superposition of two atomic waves coming from
different lattice sites with coordinates x, y and x′, y′,

ψi(x, y) + ψi(x′, y′) = exp[iΘi(x, y)]

× {Ri(x, y) +Ri(x′, y′) exp[iΘi(x′, y′) − iΘi(x, y)]} .
(8)

The nontrivial phase difference Θi(x′, y′) − Θi(x, y) can
lead to the interference pattern, as in Greiner et al.’s ex-
periment.

3 Optical operation of the atomic
quasi-clusters

In order to operate the 2D atomic quasi-clusters, we re-
quire adjustment of the laser potential. For the potential
V (x, y) = V1 sin2 x+V2 sin2 y, it is well-known that suffi-
ciently great well depth |V1| or |V2| can suppress the mo-
tion in the x- or y-direction and reduces the 2D problem
to quasi-1D. This assertion is illustrated numerically in
Figure 4, where we have set V1 = 10, V2 = 2 and im-
posed a high potential barrier in the x-direction. As V1 is
increased to a critical value, no atoms can tunnel through
it such that the atomic quasi-clusters propagate only in
the y-direction.

In this case, we need only to consider the quasi-1D
stationary state GPE in the form

−ψyy +
[
V2 sin2 y + g0|ψ|2

]
ψ = µψ. (9)

The quasi-1D GPE with the optical lattice potential has
been applied to many physical fields [16–19,29]. Adopting
a method very similar to the 2D case, making the 1D ex-
ternal potential balance with the interatomic interaction,
we derive the 1D superfluid solution

ψ(y) =
√

(µ− 1)/g0 cos y + i
√

(µ− 1 − V2)/g0 sin y
= R(y) exp[iΘ(y)],

R(y) =
√

(µ− 1 − V2 sin2 y)/g0,

Θ(y) = arctan
[√

1 − V2/(µ− 1) tan y
]
. (10)

Obviously, if the trap depth |V2| exceeds the constant
|µ − 1|, the module and phase of equation (10) cannot
be kept as real functions which would make the solution
of PGE invalid. Therefore, the maximum and critical trap
depth is |V2| = |µ − 1| for holding the exact solution. In
other words, for a given |V2| the value of |µ − 1| is great
than or equal to it. To keep positive atomic number den-
sity, equation (10) requires that the chemical potential
depends on the properties of the interatomic interaction.
The attractive interaction with g0 < 0 needs it to obey
µ − 1 < 0 and the repulsive one with g0 > 0 limits it
to µ − 1 > 0. If one changes the sign of g0 through the
Feshbach resonance [30,31], the transitions occur between
the states µ − 1 < 0 and µ − 1 > 0. Letting g0 = 1
and V2 = −V0, equation (10) becomes the known solution
given by Bronski et al. [20].

As in the 2D case, the exact solution (10) describes
some stationary states of the 1D nonlinear Schrödinger
equation for a BEC interacting with a standing wave laser
field. Its norm is spatially periodic and thereby repre-
sents an array of BEC atomic quasi-clusters. When one
suddenly turns off the magnetic and optical trap in an
experiment, the atomic wave function will retain its ini-
tial phase and exhibit the interference pattern. The phase
gradient ∇Θ(y) is correlated to the velocity field v(y) =
k�Θy/m = Ck�/(mR2) and the atomic current density
J = R2v = Ck�/m with C = g−1

0

√
(µ− 1)(µ− 1 − V2)

being a constant. The constant current density describes
an uniform atom current with nonzero flow velocity. This
implies that the atomic quasi-clusters can move from one
lattice site to the next with a time-independent velocity.
If one initially and locally creates a condensate on the side
of the optical potential [32], its velocity may be nonzero
and toward another side of the potential. Thus the ultra-
cold atomic quasi-clusters form and propagate in that di-
rection. In the presence of a source of ultracold atoms the
atomic quasi-clusters will transport in the lattice potential
with a uniform current density. Combining equation (10)
with the normalization integral as in equation (5) yields
the average number of atoms per well

N ′/n = (nπ)−1

∫ (n+1/2)π

π/2

R2(y)dy = (µ− 1 − V2/2)/g0,

(11)
where N ′ is the number of atoms in a row of the optical
lattices and n the number of lattices. Since the chemical
potential has various possible values, the number of atoms
per well N ′/n may be very large. However, its minimum is
limited by the inequality |µ−1| ≥ |V2|. Employing the pa-
rameter set µ = 12, V2 = 8, g0 = 8πka = 1.02, from equa-
tion (10) we numerically plot the particle-number density
R2(y) versus y in Figure 5 as a solid curve. This curve
shows that the number density does not vanish over the
optical potential (the dashed line). In Figure 6 we show
the spatial evolution of the superfluid velocity (in units of
mm/s) for µ = 12, g0 = 1.02, where the solid, dashed and
dotted curves correspond to parameters V2 = 5, 8 and
10 respectively. Although a larger V2 is associated with a
larger amplitude, the average velocity over a spatial period
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Fig. 5. Plot of the spatial evolution of the particle number
density R2 for a quasi-1D superfluid with parameters V2 = 8,
µ = 12, g0 = 1.02. The density does not vanish wherever that
implies tunneling of the potential barriers and propagation of
the atomic quasi-clusters with the velocity proportional to the
phase gradient. The dashed curve indicates the corresponding
optical potential.
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Fig. 6. Plot of the propagation velocity (in units of mm/s)
versus spatial coordinate. The chemical potential is fixed as
µ = 12 and the trap depth is changed. The solid, dashed and
dotted curves correspond to V2 = 5, 8, 10 respectively. The
velocity periodically varies with a period 2π and variable am-
plitude. The larger V2 is associated with the larger amplitude,
but the mean velocity is invariable.

2π is the same for different V2. If we adopt the laser with
wavelength λ = 2π/k ≈ 1 µm and the 87Rb atoms with
mass m being 87 times the proton mass, the average ve-
locity reads

v = (2π)−1

∫ 2π

0

(k�Θy/m)dy = 4.58259(mm/s). (12)

Now let us see how one can adopt the optical brake to op-
erate the atomic quasi-clusters. It is known that if the lat-
tice potential depth |V2| is adjusted to be sufficiently large,
no atom can tunnel through the potential barrier [13]. This
infers the particle-number density vanishing at a peak
point yj = (j + 1/2)π for j = 0, 1, ... of the optical po-
tential V2 sin2 y with V2 > 0. Such a critical solution is
obtained by increasing the trap depth to the critical value
V2 = µ− 1 and inserting it into equation (10),

ψ′(y) = R′(y) =
√
V2/g0 cos y for µ = 1 + V2, (13)

where V2/g0 > 0 and the phase vanishes. Consequently,
we get zero propagation velocity and successfully stop the
motion of atomic quasi-clusters. In other words, by ad-
justing the trap depth V2 we have realized the quantum
transition from the superfluid to a new insulator, which
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Fig. 7. Plot of the R2 versus y for V2 = 11 and the same
chemical potential and interaction intensity as in Figure 5. It
is shown that the increase of well depth leads to the critical
insulating state, where the density vanishes at any peak point
of the potential (dashed line). This means that the ultracold
atomic quasi-clusters are stopped by the optical brake.

is described by the critical state function ψ′(y). Setting
µ = 12, V2 = 11 and g0 = 1.02, we plot the spatial evolu-
tion of R′2 in Figure 7 as the solid curve, where the dashed
line denotes the corresponding optical potential. Differing
from the superfluid state in Figure 5, the particle number
density of the insulating state vanishes at any peak point
of the potential which means no atoms cross the barriers.
Given the chemical potential µ = 1+V2, the average num-
ber of atoms per well is determined by the experimental
parameters V2 and g0 through the normalization integral
equation (11),

N ′/n = V2/(2g0). (14)

For the fixed number of atoms per well and g0 this gives
maximum V2 and indicates the range of V2 values in terms
of the experimental parameters N ′, n and g0, namely the
ratio of the trap depth to the interatomic interaction in-
tensity V2/go being less than or equal to two times the
atomic number per well 2N ′/n. Since equation (13) is in-
valid for the Mott insulating state and the invalidation is
associated with V2 > µ−1, in the Mott insulating state the
trap depth will exceed the limit of equation (14) for given
number of atoms per well. Substituting the experimen-
tal parameters N ′/n ≈ 2.5, g0 = 1.02 into equation (14)
leads to the critical trap depth transiting to state (13) as
V2 = 5.1, which is less than and approximately equal to
the critical value of the Mott insulating state [13], as we
have asserted. Due to the reversible quantum transition,
we can redrive the atomic quasi-clusters by reducing the
optical potential depth to |V2| < µ − 1 such that equa-
tion (10) is again valid.

4 Conclusion

We have obtained four exact solutions of the 2D stationary
state GPE by regulating the standing waves of the laser
to balance the atom-atom interaction. We analytically and
numerically revealed that setting a larger optical potential
barrier in one direction can reduce the 2D GPE and its
exact solutions to quasi-1D ones. These exact solutions de-
scribe the motions of some ultracold atomic quasi-clusters
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with velocities being proportional to phase gradients of the
solutions. When the velocity does not vanish, the atomic
quasi-clusters are in the superfluid state, and zero velocity
corresponds to the critical insulating state of the system,
where the GPE is just validated and the coherent phase
becomes incoherent. The ultracold atomic quasi-clusters
can be operated theoretically through the exact solutions
and experimentally by adjusting the laser beams. Such op-
tical operations will be useful for making an atomic laser
of the superfluid [33–35], and performing quantum com-
putations in the insulator.

The exact solutions are some special solutions charac-
terized by different chemical potentials. Given a chemical
potential, an exact solution exists only for some particu-
lar parameters which satisfy a relationship among the trap
depth, the number of atoms per well and the interatomic
interaction intensity. This relationship indicates that the
critical trap depth is the cause of the quantum phase tran-
sitions between the superfluid and the critical insulator.
When this relationship breaks down, the system may en-
ter other superfluid states or the Mott insulating state,
which can be described by the Bose-Habbard model. On
the other hand, we have only considered the zero tem-
perature case in above work. Further work should contain
the investigation of thermal fluctuations for finite temper-
atures [36].

This work was supported by the National Natural Science
Foundation of China under Grant No. 10275023, and by the
Hubei Provincial Key Laboratory of Gravitational and Quan-
tum Physics of China.
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